Graphs, Links, and Duality on Surfaces
نویسنده
چکیده
We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Topological duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where the Tutte polynomial is known as the partition function of the Potts model. For ribbon graphs, PG specializes to the well-known Bollobás-Riordan polynomial, and in fact the two polynomials carry equivalent information in this context. Duality is also established for a multivariate version of the polynomial PG . We then consider a 2-variable version of the Jones polynomial for links in thickened surfaces, taking into account homological information on the surface. An analogue of Thistlethwaite’s theorem is established for these generalized Jones and Tutte polynomials for virtual links.
منابع مشابه
ar X iv : 0 90 3 . 53 12 v 2 [ m at h . C O ] 1 1 M ay 2 00 9 GRAPHS , LINKS , AND DUALITY ON SURFACES
We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Poincaré duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where Tutte polynomial is known as the partition function of the Pott...
متن کاملar X iv : 0 90 3 . 53 12 v 1 [ m at h . C O ] 3 1 M ar 2 00 9 GRAPHS , LINKS , AND DUALITY ON SURFACES
We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Poincaré duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where Tutte polynomial is known as the partition function of the Pott...
متن کاملGeneralized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial
We generalize the natural duality of graphs embedded into a surface to a duality with respect to a subset of edges. The dual graph might be embedded into a different surface. We prove a relation between the signed Bollobás-Riordan polynomials of dual graphs. This relation unifies various recent results expressing the Jones polynomial of links as specializations of the Bollobás-Riordan polynomials.
متن کاملGraph Homology: Koszul and Verdier Duality
We show that Verdier duality for certain sheaves on the moduli spaces of graphs associated to Koszul operads corresponds to Koszul duality of operads. This in particular gives a conceptual explanation of the appearance of graph cohomology of both the commutative and Lie types in computations of the cohomology of the outer automorphism group of a free group. Another consequence is an explicit co...
متن کاملA duality between fuzzy domains and strongly completely distributive $L$-ordered sets
The aim of this paper is to establish a fuzzy version of the dualitybetween domains and completely distributive lattices. All values aretaken in a fixed frame $L$. A definition of (strongly) completelydistributive $L$-ordered sets is introduced. The main result inthis paper is that the category of fuzzy domains is dually equivalentto the category of strongly completely distributive $L$-ordereds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 20 شماره
صفحات -
تاریخ انتشار 2011